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Abstract 

 The development of technology in the area of electromechanical and electronic machines, 

particularly computers has had a great influence on automata theory. Here we are mainly 

concerned with one sub-discipline of automata theory, namely the algebraic theory of automata, 

which uses algebraic concepts to formalize and study certain types of finite state machines. One of 

the main algebraic tools used to do this is the theory of semigroup. 
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Introduction :   

  We meet automata or machines in various forms such as calculating machines, computer, 

money changing device. We shall indicate what is common to all automata and describe an abstract 

model which will be amenable to mathematical treatment. We study close relationship between 

automata and semigroup. 

1.   Definition : 

  A semiautomaton is a triple S = (Z, A,  ), consisting of two nonempty sets Z (the set of 

states) and A (the input alphabet), and a  function  : Z x A → Z, called the next-state function of S.  

  The above definition is very much an abstraction of automata in the usual sense. Historically, 

the theory of automata developed from concrete automata in communication techniques, nowadays 

it is a fundamental science. If we want “outputs”, then we have to study automata rather than 

semiautomata. 

2.  Definition : 

  An automaton is a quintuple A = (Z, A, B,  , ) where (Z, A,  ) is a semiautomaton, B is a 

nonempty set called the output alphabet and  : Z x A→ B is a function, called the output function. 

  If z  Z and a  A, then we interpret  (z, a)  Z as the next state into which z is 

transformed by the input a. We consider  (z, a)  B as the output of z resulting from the input a. 

Thus if the automaton is in state z and receives the input a, then it changes to state  (z, a), 

producing an output  (z, a). 
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3.  Definition : 

  A (semi-)automaton is finite if all sets Z, A and B are finite; finite automata are also called 

Mealy automata. If a special state z0  Z is fixed, then the (semi-) automaton is called initial and z0 

is the initial state. We write (Z, A,  , z0) in this case. An automaton with   depending only on z is 

called a Moore automaton. 

  In practical examples it often happens that states are realized by collections of switching 

elements each of which has only two states (e.g., current-no current), denoted by 1 and 0. Thus Z 

will be the Cartesian product of several copies of Z2. Similarly for A and B. Sometimes   and    are 

given by formulas. Very often, however, in finite automata,   and  are given by tables. 

4.  Example (Cafeteria Automaton) : 

  We consider the following situation in a student’s life. The student is angry or bored or happy; 

the cafeteria is closed, offers junk food or good dishes. If the cafeteria is closed, it does not change 

the student’s mood. Junk food offers “lower” it by one “degree” (if he is already angry, then no 

change), good food creates general happiness for him. Also there are two outputs b1, b2 with 

interpretation 

  b1 ……. “student shouts”,   b2 …… “student is quiet” 

we assume that the student only shouts if he is angry and if the cafeteria only offers bad food. 

Otherwise he is quiet, even in state z3.  

  We try to describe this rather limited view of a student’s life in terms of an automaton S = (Z, 

A, B,  , ). We define Z = {z1, z2, z3} and A = {a1, a2, a3}, with 

  z1 … “student is angry”.  a1 …... “the cafeteria is closed”   

 z2 … “student is bored”.  a2 …... “the cafeteria offers junk food”   

 z3 … “student is happy”.  a3 …... “the cafeteria offers good food”   

we then obtain 

       a1   a2   a3                       a1  a2   a3 

  z1   z1   z1   z3                   z1    b2  b1   b2 

  z2   z2   z1   z3                   z2    b2  b2   b2 

  z3   z3   z2   z3                   z3    b2  b2   b2 

  In a computer it would be rather artificial to consider only single input signals. Programs 

consist of a sequence of elements of an input alphabet. Thus it is reasonable to consider the set of 

all finite sequences of elements of the set A, including the empty sequence A. In our study of 

automata we extend the input set A to the free monoid A* with A as identity. 
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    We also extend   and   from Z x A to Z x A* by defining for z  Z and  a1, a2, …. ar   A: 

 *(z, A) := z,  *(z, a1) :=  (z, a1),  *(z, a1 a2) :=  ( *(z, a1),a2) etc. and  *(z, A) := A,  *(z, a1) 

:=  (z, a1),  *(z, a1 a2) :=  (z, a1)  *( (z, a1),a2) and so on. In this way we obtain functions  * : 

Z x A* → Z and  *: Z x A* → B*. The semiautomaton S = (Z, A,  ) (the automaton A  = (Z, A, B, 

 , )) is  thus  extended to the new semiautomaton S* := (Z, A*,  *) (automaton A * = (Z, A*, B*, 

 *,  *), respectively). We can easily describe the action of S and A  if we let z   Z and a1, a2, …. 

 A.  

   z1 := z, 

  z2 :=  (z1, a1) 

  z3 :=  *(z1, a1 a2) =  * ( (z1, a1), a2) =  (z2, a2), 

  z4 :=  (z3, a3), …… 

If the (semi-)automaton is in state z and an input sequence a1a2…ar  A* operates, then the states 

are changed from z = z1 to z2,z3,… until the final state zr+1 is obtained. The resulting output 

sequence is  (z1,a1)  (z2,a2) ….  (zr,ar).   
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